Perimeter, Area \& Volume

Name \qquad Date \qquad

Area, perimeter and volume are related topics. It can be confusing sorting out which one is which!

Table 1 lists examples of area, perimeter and volume questions that have come up in Edexcel Functional Skills exams. It shows what you're asked to calculate, and what units to expect.

	Perimeter	Area	Volume
	One dimension (length)	Two Dimensions (length and width)	Three Dimensions (length, width, depth)
	e.g. line, distance	e.g. square, circle, triangle, polygon	e.g. cube, sphere, pool, pond, barrel, jug
	Edging for a lawn or garden	A wall that needs papering or painting	How much water in a swimming pool or pond
	Putting up coving around a room	A room that needs wallpaper	Removing sludge
	Building a wall around a pond or pool	A garden that needs fertiliser	How much fertiliser to put in a watering can of water
	Doing a charity run or planning a run or race	Covering a pond in netting	Capacity of air that a fan can move in a certain time
	The distance a security guard walks on his 'beat'	A patch of earth that needs turfing, gravelling or paving	How much chlorine needs to be put in a swimming pool
	Fencing for a sheep field	Buying kitchen worktops	Using water or gas meter readings to calculate accurate bills or compare bills
	Distance driven by a travelling salesperson	Making floor plans or loft insulation	Scaling up or down liquids in a recipe
	$\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$, inches, feet, yards, miles	$\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$, in 2, yards ${ }^{2}$, miles ${ }^{2}$, acres, hectares	$\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}, \mathrm{~km}^{3}, \mathrm{in}^{3}$, millilitres, centilitres, litres, quarts, gallons, pints, fluid ounces, tsp, tbsp

Table 1

If you take the first letter of each of these skills ... you get P. A. V.

\qquad
\qquad

A Piece of PAV!

I have made a Pavlova out of two layers of meringue, and two layers of cream.

The diameter of my Pavlova is 30 cm .
The meringue circles are 1.5 cm deep, and the cream is 1 cm thick.

As it's for a special occasion, I want to put a special ribbon around it for presentation.
π is 3.14

Example question(s)	I've got 80 cm of ribbon. Do I have enough to go around the Pavlova?	What area of meringue must I cover with cream? I have 1.5 litres of whipped cream. Is this enough?	Calories (Kcal) for Pavlova $=3.2 \times$ volume in cm^{3}. How many calories in my Pavlova?
PAV?	Perimeter	Area (and volume/capacity)	Volume
Formula	$2 \pi r$	πr^{2}	$\pi r^{2} h$
Working out.	Circumference = perimeter. $\begin{aligned} & \text { Radius }=\frac{\text { diameter }}{2} \\ & 30 \mathrm{~cm} \div 2=15 \mathrm{~cm} \end{aligned}$ Formula: $2 \pi r=$ $\begin{aligned} & 2 \times 3.14 \times 15 \\ & =94.2 \mathrm{~cm} \text { of ribbon } \end{aligned}$	$\begin{aligned} & \text { Area of } 1 \text { meringue circle } \\ & =\pi^{2} \\ & =3.14 \times 15^{2} \\ & =3.14 \times(15 \times 15) \\ & =706.5 \mathrm{~cm}^{2} \\ & \text { Two layers }=706.5 \times 2 \\ & =1413 \mathrm{~cm}^{2} \\ & \text { Cream is } 1 \mathrm{~cm} \text { thick so I } \\ & \text { need } 1413 \mathrm{~cm}^{2} \times 1= \\ & 1413 \mathrm{~cm}^{3}(\text { or } 1413 \mathrm{ml}) \\ & 1.5 \text { litres }^{2}=1500 \mathrm{ml} \text { or } \\ & 1500 \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & \text { Height }=(2 \times 1.5)+(2 \times 1) \\ & \text { Height }=3+2=5 \end{aligned}$ Volume of Pavlova $=$ $\pi r^{2} h$ $\begin{aligned} & =3.14 \times(15 \times 15) \times 5 \\ & =3.14 \times 225 \times 5 \\ & =3532.5 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} & \text { Calories = 3.2 } \mathrm{x} \text { vol } \\ & =3.2 \times 3532.5 \\ & =11,304 \mathrm{Kcal} \end{aligned}$
Answer	No, I do not have enough ribbon. I need 94.2 cm of ribbon	I will need to cover $1,413 \mathrm{~cm}^{2}$ with cream. Yes, I have enough cream.	There are $11,304 \mathrm{Kcal}$ in my Pavlova.
		Remember Always show your workings, and show that you can substitute the numbers you're given into the formula.	

GCSE MATHEMATICS: GEOMETRY \& MEASURES - 2. Mensuration \& calculation

Weighting percentages for Foundation tier (grades 1-5)
Number (N) 25\%, Algebra (A) 20\%, Ratio, proportion \& rates of change (R) 25%, Geometry \& measures (G) 15%, Probability (P) and Statistics (S). P \& S have a combined weighting of 15%. Enlarged bold font indicates main coverage.

Foundation (grades 1-5)		Additional Foundation and Higher only (grades 4-9)		
G14	use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money etc.)			
G15	measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings			
G16	to know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)			
	know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)	surface area and volume of spheres, pyramids, cones and composite solids (including frustrums) Note: Solutions in terms of π may be asked for.		
G18 -G23	No Foundation coverage			

Subject content - FUNCTIONAL SKILLS MATHEMATICS 2018 (Comes into effect September 2019)

\checkmark indicates content covered by this resource, although this will vary with the student group and how the resource is used by the teacher. $\checkmark \checkmark=$ a key (learning objective). $\rightarrow=$ not specifically covered but included to show progression across levels. Content at each level subsumes and builds upon the content at lower levels.

Fundamental mathematical knowledge and skills: these must be demonstrated in their own right, both with and without a calculator, in addition to being used to solve problems or complete tasks.

Entry Level 3
 Level 1
 L1.5 Use simple formulae expressed in words for one or two-step operations \rightarrow

Level 2

L2.3 Evaluate expressions and make substitutions in given formulae in words and symbols $\checkmark \checkmark$

Using common measures, shape and space

E3.14 Use and compare measures of length, capacity, weight and temperature using metric or imperial units to the nearest labelled or unlabelled division \rightarrow E3.15 Compare metric measures of length including millimetres, centimetres, metres and kilometres \rightarrow
E3.19 Sort 2-D and 3-D shapes using properties including lines of symmetry, length, right angles, angles including in rectangles and triangles \rightarrow

L1.22 Calculate area and perimeter of simple shapes including those that are made up of a combination of rectangles \rightarrow
L1.23 Calculate the volumes of cubes and cuboids \rightarrow

L2.16 Calculate perimeters and areas of 2-D shapes including triangles and circles and composite shapes including non-rectangular shapes (formulae given except for triangles and circles) $\checkmark \checkmark$ L2.17 Use formulae to find volumes and surface areas of 3-D shapes including cylinders (formulae to be given for 3-D shapes other than cylinders)

References:

Department for Education (Feb 2018), Subject content functional skills: mathematics https://www.gov.uk/government/publications/functional-skills-subject-content-mathematics DfE (2013), Mathematics GCSE subject content and assessment objectives.
https://www.gov.uk/government/publications/gcse-mathematics-subject-content-and-assessment-objectives Also covers many adult numeracy curriculum elements. http://www.excellencegateway.org.uk/content/etf1075 Edexcel (Perason) past papers (Functional Skills Mathematics)
https://qualifications.pearson.com/en/qualifications/edexcel-functional-skills/Maths.coursematerials.html

Solving mathematical problems, carrying out tasks and decision making.

Entry Level 3 students	Level 1 students	Level 2 students
are expected to be able to:	are expected to be able to:	are expected to be able to:

Use the content knowledge and skills to recognise and obtain a solution or solutions to a: ${ }^{1}$ simple problem	${ }^{2}$ straightforward problem. \downarrow
E3a. Use given mathematical information	L1a. L2a. Read, understand and use mathematical information and
including numbers, symbols, simple	mathematical terms used at this level \checkmark

E3b. Recognise, understand and use simple mathematical terms appropriate to Entry Level 3.
E3c. Use the methods given above to produce, check and present results that make sense to an appropriate level of accuracy.
E3d. Present results with appropriate explanation using numbers, measures, simple diagrams, charts and symbols appropriate to Entry Level 3.
${ }^{1} \mathrm{~A}$ simple mathematical problem requires working through one step or process. At Entry Level it is expected that students will be able to address individual problems each of which draw upon knowledge and/or skills from one MCA (NS, MS or HD).

Context should be familiar to all students and easily described.

KEY:

MCA = appropriate mathematical content area(s).
NS = Using numbers and the number system.
MS = Using common measures, shape and space.
HD = Handling information and data.
${ }^{2} \mathrm{~A}$ straightforward problem requires students to either work through one step or process or to work through more than one connected step or process. Individual problems are based on the knowledge and/or skills in the MCA (i.e. NS, MS or HD). At Level 1 it is expected that the student will be able to address individual problems, some of which draw upon a combination of any two of the MCA and require students to make connections between those content areas.

The context of individual problems at L1 will require some comprehension in order for the student to be able independently to identify and carry out an appropriate mathematical approach.

L2d. Identify suitable operations \& calculations to generate results \checkmark

L1d. L2e. Analyse and interpret answers in the context of the original problem
L1e. L2f. Check the sense, and reasonableness, of answers
L1f. Present results with appropriate explanation and interpretation demonstrating simple reasoning to support the process \& show consistency with the evidence presented

L2g. Present results and explain results clearly and accurately demonstrating reasoning to support the process and show consistency with the evidence presented
${ }^{3}$ A complex problem requires a multistep process, typically requiring planning and working through at least two connected steps or processes. Individual problems are based on a combination of the knowledge and/or skills from the MCA (NS, MS or HD). At Level 2 it is expected that the student will be able to address individual problems some of which draw upon a combination of all three MCA and require students to make connections between those content areas.

The context of individual problems at L2 will require interpretation and analysis in order for the student to be able independently to identify and carry out an appropriate mathematical process or processes.

